免费国产自久久久久三四区久久_久久99性xxx老妇胖精品_欧美女女_老司机深夜福利网站_91影视免费版在线看_91九色porny首页最多播放

position: EnglishChannel  > InnovationChina> Muography: Cosmic Rays Revolutionize Relic Investigations

Muography: Cosmic Rays Revolutionize Relic Investigations

Source: 科技日報 | 2023-03-30 11:01:57 | Author: 盧子建



The photo shows the Anyuan Gate (North Gate) of the Xi'an City Wall. (COURTESY PHOTO)

By Staff Reporters

Many cultural relics in China have stood for hundreds of years, and it is often difficult to detect the damage deep inside them. Now, however, through the adoption of muography, a research group from Lanzhou University (LZU) has managed to conduct a detailed and high-resolution survey on a rampart of a 600-year-old city wall in Xi'an, northwest China's Shaanxi province.

How muography tech works

According to the research group, muography is a rapidly developing and non-destructive tomographic technology that uses cosmic ray muons.

"Muon" is a type of subatomic particle which is generated when cosmic rays go through the Earth's atmosphere. Muons are similar to electrons, but the mass of a muon is 207 times the mass of an electron. It is estimated that 10,000 muons hit the sea surface per square meter every minute, said a researcher from the group.

Compared with neutrons, X -rays and gamma rays, muons have stronger penetrating capability. As muons go deeper inside an object, their energy decreases gradually. When the outline of an object is known, researchers could deduce the density and the inner structure of the object by detecting the intensity attenuation of muons inside the object.

"It's like the imaging of a human body by X-ray scanning," said Liu Juntao, member of the research group.

The researchers put muon detectors around the object, and collect the muon calculation data based on the penetration situations from different directions in the object. The data is then analyzed by computer to realize the 3D image of the object.

"If there is a one-meter wide hole in objects like city walls as thick as over ten meters or even dozens of meters, we could definitely detect it by muography," said Liu.

Challenge accepted

Situations in real life are much more complicated than in laboratories. The researchers encounter many challenges in the process of producing the 3D image of the city wall.

The equipment had to be put outside the room and endure the natural environment like wind and sun, said Yao Kaiqiang, postgraduate student at LZU. This led to many problems, for example, the signals received by the equipment could become unstable due to electrical short circuits or hugely fluctuating voltage. The research group updated the detector used in their lab to better cope with such situations, and Yao and another researcher stayed in Xi'an to check the equipment frequently and process the chaotic data gained in the unstable environment.

The data processing was also a challenge. One issue was the amount of data acquired was much smaller than that of unknown quantity to be solved. Liu Guorui, postgraduate student at LZU said that this required her and her coworkers to pick out the most reasonable model that could satisfy several equations at the same time.

In addition, calculations became difficult when there was density anomaly, as the result could be affected by systematic deviation, according to Liu Guorui. The calculation result showed that there was a hollow in the northern part of the rampart, but the researchers had to exclude technical reasons like improper measurement or data processing, before confirming the result.

Archaeological application

After the result was verified, it was found that there were indeed some apparent density anomalies inside the rampart.

Surprisingly, the result also identified an area of low density and clearly presented its location, shape and size. The area turned out to be the power distribution room, which researchers were not told about in advance. This is an effective verification of muography via blind testing.

Wu Chun, deputy director of the management committee of the Xi'an City Wall, hoped that further cooperation with the research group could prove that the technology is safer and more accurate, thus making it possible to have more forward planning in preventive conservation, by providing reliable references for repairing the wall with the assistance of geological surveys.

As early as November 2020, the research group developed China's first cosmic ray muons tomography system, with triangular bar plastic scintillator detectors. Now the system has been taken out of the lab and been applied in the field. The localization rate of this technology has reached 95 percent, according to Liu Juntao.

"This technology would definitely play a role in investigating large-scale archaeological sites," said Liu, adding that Dunhuang Academy is now communicating with the research group, planning for future cooperation in detecting the inner structures of the famous grottoes.

Editor:王曉夏

Top News

Forging a Resilient Economy with Sci-tech Power

Tiangong Ultra, developed by the Beijing Humanoid Robot Innovation Center, won the world's first half-marathon for humanoid robots in Beijing on April 19, demonstrating the prospects of China's humanoid robot industry and the epitome of the country's strategic emerging industries and future industries. These industries are surging ahead, facilitating the construction of a resilient economy with sci-tech force.

抱歉,您使用的瀏覽器版本過低或開啟了瀏覽器兼容模式,這會影響您正常瀏覽本網頁

您可以進行以下操作:

1.將瀏覽器切換回極速模式

2.點擊下面圖標升級或更換您的瀏覽器

3.暫不升級,繼續瀏覽

繼續瀏覽
主站蜘蛛池模板: 亚洲天堂AV网站在线观看 | 久一精品| 亚洲中文无码一区二区三区 | 日本肥熟 | 亚洲精品蜜桃久久久久久 | 麻豆va一区二区三区久久浪 | 久久我不卡| 久久99精品久久久久久9鸭 | 日本阿v片在线播放不卡的 久久精品农村毛片 | 免费一级大片 | 亚洲AV无码久久精品蜜桃 | 亚洲欧美视频网站 | 国产一级v片不卡在线 | 一级做a爱片久久毛片 | 午夜影院在线观看日韩 | 国产精品成人69xxx免费视频 | 亚洲一区二区久久 | 久久免费观看午夜成人网站 | 极品少妇性荡视频99精品视频 | 直接看片的av网址在线看片 | 日韩色中色 | WWW国产精品内射老师 | 精品视频一区二区三区四区 | 国产馆无码视频在线观看播放 | 成年人网站在线观看视频 | 国产在线乱码一区二区三区 | 日韩中文网 | 99精品免费观看 | 国产在线播放精品一区二区 | 亚洲午夜精品一区二区三区 | 欧美国产韩a在线视频 | 不卡二区 | 国产亚洲精aa在线看 | 秋霞鲁丝片无码一区二区 | 亚洲综合精品 | 99精品欧美一区二区三区 | 2020年国产高中毛片在线视频 | 一本大道加勒比久久综合 | 久久久久国产精品一区二区三区 | 亚洲一区二区三区精品在线观看 | 97国产精华最好的产品亚洲 |